在说这个题目之前先来说说一个排序算法 “归并算法

归并算法采取思想是分治思想,分治思想简单说就是分而治之,将一个大问题分解为小问题,将小问题解答后合并为大问题的答案。

乍一看跟递归思想很像,确实如此,分治思想一般就是使用递归来实现的。但是需要注意的是:递归是代码实现的方式,分治属于理论。

接下来看一副图理解下:

图片

说完它的思想:我们再来分析下时间复杂度。归并算法采用的是完全二叉树的形式。所以可以由完全二叉树的深度可以得知,整个归并排序需要进行log2n次。

然后每一次需要消耗O{n}时间。所以总的时间复杂度为o{nlog2n}。归并排序是一种比较占用内存,但是效率高且稳定的算法。

贴上代码:

static void Main(string[] args) {
    int[] arr = new int[] { 14,12,15,13,11,16 ,10};

    int[] newArr = Sort(arr, new int[7], 0, arr.Length - 1);
    for (int i = 0; i < newArr.Length - 1; i++)
    {
        Console.WriteLine(newArr[i]);
    }

    Console.ReadKey();
}

public static int[] Sort(int[] arr, int[] result, int start, int end)
{
    if (start >= end)
        return null;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    Sort(arr, result, start1, end1);
    Sort(arr, result, start2, end2);
    int k = start;
    //进行比较。注意这里++是后执行的,先取出来数组中的值然后++
    while (start1 <= end1 && start2 <= end2)
        result[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    //将每个分组剩余的进行复制
    while (start1 <= end1) 
        result[k++] = arr[start1++];
    //将每个分组剩余的进行复制
    while (start2 <= end2)
        result[k++] = arr[start2++]; 
    for (k = start; k <= end; k++)
        arr[k] = result[k];
    return result;
}

说完了归并算法回到题目上来 首先分析下 题目给定的是两个已经排好序的数组合并,关键字“合并”,“两个”,正好符合我们的归并算法,并且已经分类好了,只需要去合并就可以了。

来看下几张图。

蓝色的箭头表示最终选择的位置,而红色的箭头表示两个数组当前要比较的元素,比如当前是2与1比较,1比2小,所以1放到蓝色的箭头中,蓝色的箭头后移,1的箭头后移。

然后2与4比较,2比4小那么2到蓝色的箭头中,蓝色箭头后移,2后移,继续比较…….

归并思路就是这样了,最后唯一需要注意的是那个先比较完的话,那么剩下的直接不需要比较,把后面的直接移上去就可以了,这个需要提前判定一下。

贴上代码:

static void Main(string[] args) {
    int[] arr1 = new int[] { 2, 3, 6, 8 };
    int[] arr2 = new int[] { 1, 4, 5, 7 };
    int[] newArr = Sort(arr1, arr2);
    for (int i = 0; i < newArr.Length - 1; i++)
    {
        Console.WriteLine(newArr[i]);
    }

    Console.ReadKey();
}

public static int[] Sort(int[] arr1,int[] arr2)
{
    int[] newArr = new int[arr1.Length + arr2.Length];
    int i = 0, j = 0, k = 0;
    while (i < arr1.Length && j < arr2.Length)
    {
        if (arr1[i] < arr2[j])
        {

            newArr[k] = arr1[i];
            i++;
            k++;
        }
        else
        {

            newArr[k] = arr2[j];
            j++;
            k++;
        }
    }

    while (i < arr1.Length)
        newArr[k++] = arr1[i++];
    while (j < arr2.Length)
        newArr[j++] = arr2[j++];
    return newArr;
}

最后感谢一下大佬提供的思路:

https://blog.csdn.net/k_koris/article/details/80508543

来源:https://blog.csdn.net/weixin_40097554/article/details/108656165/

作者:貂蝉要睡觉