递归思维:k 个一组反转链表

预计阅读时间:5 分钟

上篇文章 递归反转链表:如何拆解复杂问题 讲了如何递归地反转一部分链表,有读者就问如何迭代地反转链表,这篇文章解决的问题也需要反转链表的函数,我们不妨就用迭代方式来解决。

本文要解决「K 个一组反转链表」,不难理解:

递归思维:k 个一组反转链表

这个问题经常在面经中看到,而且 LeetCode 上难度是 Hard,它真的有那么难吗?

对于基本数据结构的算法问题其实都不难,只要结合特点一点点拆解分析,一般都没啥难点。下面我们就来拆解一下这个问题。

一、分析问题

首先,前文 学习数据结构的框架思维 提到过,链表是一种兼具递归和迭代性质的数据结构,认真思考一下可以发现这个问题具有递归性质

什么叫递归性质?直接上图理解,比如说我们对这个链表调用 reverseKGroup(head, 2),即以 2 个节点为一组反转链表:

递归思维:k 个一组反转链表

如果我设法把前 2 个节点反转,那么后面的那些节点怎么处理?后面的这些节点也是一条链表,而且规模(长度)比原来这条链表小,这就叫子问题递归思维:k 个一组反转链表

我们可以直接递归调用 reverseKGroup(head, 2),因为子问题和原问题的结构完全相同,这就是所谓的递归性质。

发现了递归性质,就可以得到大致的算法流程:

1、先反转以 head 开头的 k 个元素

递归思维:k 个一组反转链表

2、将第 k + 1 个元素作为 head 递归调用 reverseKGroup 函数

递归思维:k 个一组反转链表

3、将上述两个过程的结果连接起来

递归思维:k 个一组反转链表

整体思路就是这样了,最后一点值得注意的是,递归函数都有个 base case,对于这个问题是什么呢?

题目说了,如果最后的元素不足 k 个,就保持不变。这就是 base case,待会会在代码里体现。

二、代码实现

首先,我们要实现一个 reverse 函数反转一个区间之内的元素。在此之前我们再简化一下,给定链表头结点,如何反转整个链表?

// 反转以 a 为头结点的链表
ListNode reverse(ListNode a) {
    ListNode pre, cur, nxt;
    pre = null; cur = a; nxt = a;
    while (cur != null) {
        nxt = cur.next;
        // 逐个结点反转
        cur.next = pre;
        // 更新指针位置
        pre = cur;
        cur = nxt;
    }
    // 返回反转后的头结点
    return pre;
}

这次使用迭代思路来实现的,借助动画理解应该很容易。

递归思维:k 个一组反转链表

「反转以 a 为头结点的链表」其实就是「反转 a 到 null 之间的结点」,那么如果让你「反转 ab 之间的结点」,你会不会?

只要更改函数签名,并把上面的代码中 null 改成 b 即可:

/** 反转区间 [a, b) 的元素,注意是左闭右开 */
ListNode reverse(ListNode a, ListNode b) {
    ListNode pre, cur, nxt;
    pre = null; cur = a; nxt = a;
    // while 终止的条件改一下就行了
    while (cur != b) {
        nxt = cur.next;
        cur.next = pre;
        pre = cur;
        cur = nxt;
    }
    // 返回反转后的头结点
    return pre;
}

现在我们迭代实现了反转部分链表的功能,接下来就按照之前的逻辑编写 reverseKGroup 函数即可:

ListNode reverseKGroup(ListNode head, int k) {
    if (head == nullreturn null;
    // 区间 [a, b) 包含 k 个待反转元素
    ListNode a, b;
    a = b = head;
    for (int i = 0; i < k; i++) {
        // 不足 k 个,不需要反转,base case
        if (b == nullreturn head;
        b = b.next;
    }
    // 反转前 k 个元素
    ListNode newHead = reverse(a, b);
    // 递归反转后续链表并连接起来
    a.next = reverseKGroup(b, k);
    return newHead;
}

解释一下 for 循环之后的几句代码,注意 reverse 函数是反转区间 [a, b),所以情形是这样的:

递归思维:k 个一组反转链表

递归部分就不展开了,整个函数递归完成之后就是这个结果,完全符合题意:

递归思维:k 个一组反转链表

三、最后说两句

从阅读量上看,基本数据结构相关的算法文章看的人都不多,我想说这是要吃亏的。

大家喜欢看动态规划相关的问题,可能因为面试很常见,但就我个人理解,很多算法思想都是源于数据结构的。我们公众号的成名之作之一 学习数据结构的框架思维 就提过,什么动规、回溯、分治算法,其实都是树的遍历,树这种结构它不就是个多叉链表吗?你能处理基本数据结构的问题,解决一般的算法问题应该也不会太费事。

那么如何分解问题、发现递归性质呢?这个只能多练习,也许后续可以专门写一篇文章来探讨一下,本文就到此为止吧,希望对大家有帮助!

历史文章:

数据结构设计:用栈实现队列/用队列实现栈

图文详解二叉堆,实现优先级队列


递归思维:k 个一组反转链表


原文始发于微信公众号(labuladong):递归思维:k 个一组反转链表

本文由 程序员小吴 创作,采用 CC BY 3.0 CN协议 进行许可。 可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在先添加作者公众号二维码。
五分钟学算法 » 递归思维:k 个一组反转链表

我还会在以下平台发布内容

GitHub 哔哩哔哩